7085 measured reflections

 $R_{\rm int} = 0.018$

3607 independent reflections 3095 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

tert-Butyl 6-methyl-2-oxo-4-[4-(trifluoromethoxy)anilino]cyclohex-3-ene-1carboxylate

Mariano S. Alexander,^a Henry North,^a Kenneth R. Scott^a and Ray J. Butcher^{b*}

^aDepartment of Pharmaceutical Sciences, Howard University, 2300 4th Street NW, Washington, DC 20059, USA, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA Correspondence e-mail: rbutcher99@yahoo.com

Received 11 November 2010; accepted 12 November 2010

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.058; wR factor = 0.160; data-to-parameter ratio = 13.8.

In the title compound, $C_{19}H_{22}F_3NO_4$, the dihedral angle between the benzene ring and the conjugated part of the enaminone ring is 42.5 (1)°. The ester substituent makes a dihedral angle of 81.3 (2)° with this latter moiety. The crystal structure is held together by strong $N-H\cdots O$ and weak C- $H\cdots O$ intermolecular interactions. The enaminone ring is disordered over two orientations with relative occupancies of 0.794 (4) and 0.206 (4).

Related literature

The title compound possesses significant anticonvulsant properties. For the anticonvulsant properties of enaminones, see: Edafiogho *et al.* (1992); Eddington *et al.* (2003); Scott *et al.* (1993, 1995).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{22}F_{3}NO_{4}\\ M_{r}=385.38\\ Monoclinic, P2_{1}/c\\ a=13.7896 \; (3) \; {\rm \AA}\\ b=12.0820 \; (2) \; {\rm \AA}\\ c=11.0023 \; (2) \; {\rm \AA}\\ \beta=91.1978 \; (18)^{\circ} \end{array}$

V = 1832.65 (6) Å ³
Z = 4
Cu Ka radiation
$\mu = 1.01 \text{ mm}^{-1}$
T = 123 K
$0.48 \times 0.18 \times 0.08 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2007)
$T_{\min} = 0.852, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	262 parameters
$wR(F^2) = 0.160$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
3607 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O2^{i}$	0.88	2.08	2.886 (2)	153
$C2-H2A\cdots O2^{i}$	0.95	2.58	3.333 (3)	136
$C6-H6A\cdots O3^{ii}$	0.95	2.55	3.385 (3)	147
$C9B - H9BA \cdots O3^{iii}$	0.99	2.44	3.40 (6)	162

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are indebted to Mr James P. Stables, Epilepsy Branch, Division of Convulsive, Developmental and Neuromuscular Disorders, National Institute of Neurological Disorders and Stroke, for helpful discussions and initial data. The authors wish to acknowledge E. Jeannette Andrews, EdD, Deputy Director of the Center of Excellence at Howard University College of Pharmacy, Nursing and Allied Health Sciences, for her generous assistance in completing this project. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2750).

References

Edafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798–2805.

- Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). *Eur. J. Med. Chem.* 38, 49–64.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Scott, K. R., Edafiogho, I. O., Richardson, E. R., Farrar, V. A., Moore, J. A., Tietz, E., Hinko, C. N., Chang, H., El-Assadi, A. & Nicholson, J. M. (1993). J. Med. Chem. 36, 1947–1955.
- Scott, K. R., Rankin, G. O., Stables, J. P., Alexander, M. S., Edafiogho, I. O., Farrar, V. A., Kolen, K. R., Moore, J. A., Sims, L. D. & Tonnu, A. D. (1995). *J. Med. Chem.* 38, 4033–4043.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o3229 [doi:10.1107/S1600536810046969]

tert-Butyl 6-methyl-2-oxo-4-[4-(trifluoromethoxy)anilino]cyclohex-3-ene-1-carboxylate

M. S. Alexander, H. North, K. R. Scott and R. J. Butcher

Comment

Our research on enaminones has led to several compounds possessing anticonvulsant properties (Edafiogho *et al.*, 1992; Eddington *et al.*, 2003; Scott *et al.*, 1993, 1995). The present work is part of a structural study of enaminones. Our group has extensively studied the effects of modification of the enaminone with substitutions at the methyl ester, ethyl ester, and without the ester group. We synthesized a series of carbo-*tert*-butoxy esters to evaluate the effect of added bulk and lipophilicity to the ester functionality. The title compound, *tert*-butyl-4-(4-trifluoromethoxyphenylamino)-6-methyl-2-oxocyclohex-3-en-1-oate (10) is highly active, with activity at <100 mg kg⁻¹.

The compound was exclusively active in maximal electroshock seizure evaluation (MES) in mice, indicative of protection against tonic-clonic convulsions in humans (1/4 rats were protected at 15 min then 3/4 rats at 2 h and 4 hrs at post dose 50 mg kg⁻¹ in rats, orally). The MES test with mice revealed no activity in the 30 minute study, however in the 4 h MES test 1/1 animals were protected at 30 mg kg⁻¹, 3/3 animals protected at 100 mg kg⁻¹, and 1/1 at 300 mg kg⁻¹ with no toxicity. The scMET (subcutaneous phentylenetetrazole assessment), indicative of protection against absence seizures was 0/2 animals protected in doses of 62.5 to 500 mg kg⁻¹. The compound displayed no toxicity from 62.5 to 500 mg kg⁻¹ from 15 min to 24 h time range in all doses. A four hour MES test showed 4/16 mice protected at 100 mg kg⁻¹ dose and maximium protection (7/8 mice protected) at 150 and 200 mg kg⁻¹. In mice, a MES ED₅₀ (median effective dose) of 121.87 mg kg-1 and TD₅₀ (median toxic dose) of >500 mg kg-1, provided a protective index PI (defined as the ration of the median toxic dose to the median effective dose) at 95% confidence interval.

In view of the therapeutic interest in this compound its structure was determined. The conformation adopted by the molecule is such that the dihedral angle between the phenyl ring and conjugated part of the enaminone ring is $42.5 (1)^{\circ}$. The ester substituent makes a dihedral angle of $81.3 (2)^{\circ}$ with this latter moiety. The crystal structure is held together by strong N—H…O and weak C—H…O intermolecular interactions. The enaminone ring is disordered over two conformations with relative occupancies of 0.794 (4)/0.206 (4).

Experimental

4-Carbo-t-butoxy-5-methylcyclohexane-1,3-dione (6.11 g, 27 mmol), mp 145–146°C (lit. mp 130–131.5°C), and 4-trifluoromethoxyaniline (4.428 ml g, 33 mmol) were added to a mixture of absolute EtOH (100 ml) and EtOAc (100 ml), and the solution was refluxed and stirred for 6 h with azeotropic removal of water by Dean-Stark trap. Evaporation under reduced pressure yielded a yellow solid which was recrystallized from 2-PrOH, 47% yield (mp 168–171°C).).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 to 1.00 Å $U_{iso}(H) = 1.2U_{eq}(C)$ and 0.98 Å for CH₃ [$U_{iso}(H) = 1.5U_{eq}(C)$]. The H atoms attached to N were idealized with an N–H distance of 0.88 Å. The enaminone ring is disordered over two conformations with relative occupancies of 0.794 (4)/0.206 (4). Each component was constrained to have similar metrical and thermal parameters

Figures

Fig. 1. Diagram of *tert*-butyl-4-(4-trifluoromethoxyphenylamino)-6-methyl-2-oxocyclohex-3-en-1-oate showing atom labeling scheme. Thermal ellipsoids drawn at the 30% probability level.

Fig. 2. The molecular packing for *tert*-butyl-4-(4-trifluoromethoxyphenylamino)-6-methyl-2-oxocyclohex-3-en-1-oate viewed down the *b* axis. Intermolecular interactions are shown by dashed lines.

tert-Butyl 6-methyl-2-oxo-4-[4-(trifluoromethoxy)anilino]cyclohex-3-ene-1-carboxylate

Crystal data	
$C_{19}H_{22}F_3NO_4$	F(000) = 808
$M_r = 385.38$	$D_{\rm x} = 1.397 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: -P 2ybc	Cell parameters from 4437 reflections
a = 13.7896 (3) Å	$\theta = 4.9-74.0^{\circ}$
b = 12.0820 (2) Å	$\mu = 1.00 \text{ mm}^{-1}$
c = 11.0023 (2) Å	<i>T</i> = 123 K
$\beta = 91.1978 \ (18)^{\circ}$	Needle plate, colorless
V = 1832.65 (6) Å ³	$0.48 \times 0.18 \times 0.08 \text{ mm}$
7 = 4	

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	3607 independent reflections
Radiation source: Enhance (Cu) X-ray Source	3095 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.018$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 74.1^{\circ}, \ \theta_{\text{min}} = 4.9^{\circ}$
ω scans	$h = -16 \rightarrow 14$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2007)	$k = -14 \rightarrow 8$
$T_{\min} = 0.852, \ T_{\max} = 1.000$	$l = -13 \rightarrow 13$
7085 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.160$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0769P)^{2} + 1.5676P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3607 reflections	$(\Delta/\sigma)_{max} < 0.001$
262 parameters	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
F1	0.10734 (15)	0.64674 (16)	1.23883 (16)	0.0709 (6)	
F2	0.04027 (13)	0.49236 (14)	1.20234 (15)	0.0589 (5)	
F3	0.19525 (14)	0.5113 (2)	1.1945 (2)	0.0850 (7)	
01	0.09751 (12)	0.58259 (15)	1.05175 (15)	0.0420 (4)	
O2	0.59047 (12)	0.50627 (12)	0.62115 (16)	0.0397 (4)	
O3	0.66640 (13)	0.58950 (15)	0.36210 (19)	0.0490 (5)	
O4	0.75913 (13)	0.67009 (14)	0.50910 (16)	0.0437 (4)	
N1	0.38563 (13)	0.78606 (14)	0.78117 (17)	0.0301 (4)	
H1A	0.3844	0.8587	0.7870	0.036*	
C1	0.31707 (15)	0.72966 (17)	0.85070 (19)	0.0272 (4)	
C2	0.28473 (16)	0.78157 (17)	0.95577 (19)	0.0305 (5)	
H2A	0.3124	0.8503	0.9803	0.037*	
C3	0.21290 (16)	0.73416 (19)	1.0246 (2)	0.0336 (5)	
H3A	0.1906	0.7702	1.0955	0.040*	
C4	0.17405 (15)	0.63344 (18)	0.9886 (2)	0.0310 (5)	
C5	0.20450 (16)	0.58090 (18)	0.8851 (2)	0.0315 (5)	
H5A	0.1766	0.5121	0.8615	0.038*	
C6	0.27590 (15)	0.62856 (17)	0.81557 (19)	0.0295 (4)	

F1	0.0923 (14)	0.0713 (12)	0.0501 (10)	-0.0257 (10)	0.0258 (9)	-0.0172 (9)
·····F	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Atomic displace	ement parameters	(\mathring{A}^2)				
H19C	0.8195	0.4881	0.392	21 0.0	065*	
H19B	0.9330	0.5065	0.417	73 0.0	065*	
H19A	0.8613	0.4929	0.528	38 0.0	065*	
C19	0.86786 (19)	0.5226 (2)	0.440	65 (2) 0.0	0435 (6)	
H18C	0.9903	0.6937	0.497	76 0.1	110*	
H18B	0.9099	0.7823	0.53	50 0.1	110*	
H18A	0.9232	0.6706	0.61	18 0.1	110*	
C18	0.9252 (3)	0.7032 (3)	0.530	03 (4) 0.0	0734 (10)	
H17C	0.8323	0.7752	0.320	67 0.0	081*	
H17B	0.9172	0.6927	0.288	36 0.0	081*	
H17A	0.8062	0.6571	0.268	.000	081*	
C17	0.8520 (2)	0.6974 (2)	0.32	18 (3) 0.0	0543 (7)	
C16	0.85219 (18)	0.6464 (2)	0.448	84 (2) 0.0	0421 (6)	
C15	0.67459 (18)	0.64028 (0.453	39 (3) 0.0	0421 (6)	
H13A	0.4482	0.5826	0.74	53 0.0	034*	
C13	0.48038 (15)	0.63603 (16) 0.697	731 (19) 0.0	0281 (4)	
C12	0.55529 (16)	0.60027 (2	0.618	81 (2) 0.0	0329 (5)	
H14F	0.5989	0.9513	0.474	42 0.0	052*	0.206 (4)
H14E	0.6933	0.8818	0.513	33 0.0	052*	0.206 (4)
H14D	0.6391	0.8572	0.380	61 0.0	052*	0.206 (4)
C14B	0.630 (4)	0.878 (5)	0.47	l (6) 0.0	0344 (13)	0.206 (4)
H11B	0.6718	0.7133	0.65	13 0.0	031*	0.206 (4)
C11B	0.6240 (7)	0.6924 (8)) 0.583	56 (9) 0.0	0256 (5)	0.206 (4)
H10B	0.5148	0.7565	0.47:	52 0.0	032*	0.206 (4)
C10B	0.5616 (9)	0.7870 (10	0) 0.53	72 (11) 0.0	0267 (6)	0.206 (4)
H9BB	0.4569	0.8878	0.608	36 0.0	033*	0.206 (4)
H9BA	0.5494	0.8727	0.697	77 0.0)33*	0.206 (4)
C9B	0.505 (5)	0.834 (6)	0.64	1 (5) 0.0	0279 (12)	0.206 (4)
H14C	0.5769	0.8901	0.418	.0.0	052*	0.794 (4)
H14B	0.6323	0.9571	0.524	42 0.0	052*	0.794 (4)
H14A	0.6888	0.8651	0.448	36 0.0	052*	0.794 (4)
C14A	0.6263 (10)	0.8853 (13	3) 0.483	33 (13) 0.0	0344 (13)	0.794 (4)
H11A	0.5310	0.6865	0.45	50 0.0	031*	0.794 (4)
C11A	0.58523 (18)	0.6829 (2)	0.510	67 (2) 0.0	0256 (5)	0.794 (4)
H10A	0.6476	0.7949	0.640	0.0	032*	0.794 (4)
C10A	0.5972 (2)	0.7986 (2)	0.573	37 (3) 0.0	0267 (6)	0.794 (4)
H9AB	0.4546	0.8515	0.560)6 0.0)33*	0.794 (4)
H9AA	0.5105	0.8995	0.67	78 0.0)33*	0.794 (4)
C9A	0.5003 (12)	0.8322 (14	4) 0.62'	79 (13) 0.0	0279 (12)	0.794 (4)
C8	0.45375 (14)	0.74432 (16) 0.70	599 (18) 0.0)262(4)	
C7	0.11132 (18)	0.5574 (2)	1.16	33 (2) 0.0)422 (6)	
H6A	0.2969	0.5926	0.744	40 0.0)35*	

F2

0.0668 (10)

0.0592 (10)

0.0515 (9) -0.0206 (8)

0.0218 (8)

0.0063 (8)

F3	0.0611 (11)	0.1082 (17)	0.0865 (14)	0.0289 (11)	0.0204 (10)	0.0574 (13)
01	0.0411 (9)	0.0485 (10)	0.0367 (9)	-0.0135 (8)	0.0053 (7)	0.0018 (7)
02	0.0395 (9)	0.0199 (7)	0.0601 (11)	0.0059 (6)	0.0104 (8)	0.0037 (7)
O3	0.0455 (10)	0.0339 (9)	0.0674 (12)	0.0013 (8)	-0.0016 (9)	-0.0065 (9)
O4	0.0535 (11)	0.0357 (9)	0.0425 (9)	0.0030 (8)	0.0121 (8)	-0.0088 (7)
N1	0.0375 (10)	0.0172 (8)	0.0358 (9)	0.0011 (7)	0.0060 (7)	-0.0013 (7)
C1	0.0280 (10)	0.0223 (9)	0.0315 (10)	0.0030 (8)	0.0007 (8)	0.0014 (8)
C2	0.0344 (11)	0.0230 (10)	0.0342 (11)	-0.0017 (8)	-0.0001 (9)	-0.0034 (8)
C3	0.0378 (12)	0.0333 (11)	0.0299 (10)	-0.0012 (9)	0.0034 (9)	-0.0049 (9)
C4	0.0299 (10)	0.0315 (11)	0.0316 (10)	-0.0039 (9)	0.0019 (8)	0.0039 (9)
C5	0.0331 (11)	0.0240 (10)	0.0372 (11)	-0.0014 (8)	-0.0021 (9)	-0.0015 (8)
C6	0.0335 (11)	0.0249 (10)	0.0301 (10)	0.0012 (8)	0.0008 (8)	-0.0031 (8)
C7	0.0416 (13)	0.0422 (13)	0.0432 (13)	0.0024 (11)	0.0114 (10)	0.0049 (11)
C8	0.0269 (10)	0.0222 (10)	0.0295 (10)	-0.0001 (8)	-0.0014 (8)	-0.0007 (8)
C9A	0.0309 (19)	0.0166 (10)	0.036 (3)	-0.0004 (13)	0.0004 (19)	0.000 (2)
C10A	0.0268 (16)	0.0212 (12)	0.0321 (16)	-0.0029 (11)	-0.0003 (11)	-0.0011 (11)
C11A	0.0264 (13)	0.0200 (11)	0.0303 (13)	-0.0010 (9)	-0.0018 (9)	-0.0006 (10)
C14A	0.0413 (17)	0.022 (2)	0.040 (3)	-0.0023 (16)	0.009 (2)	0.0008 (19)
C9B	0.0309 (19)	0.0166 (10)	0.036 (3)	-0.0004 (13)	0.0004 (19)	0.000 (2)
C10B	0.0268 (16)	0.0212 (12)	0.0321 (16)	-0.0029 (11)	-0.0003 (11)	-0.0011 (11)
C11B	0.0264 (13)	0.0200 (11)	0.0303 (13)	-0.0010 (9)	-0.0018 (9)	-0.0006 (10)
C14B	0.0413 (17)	0.022 (2)	0.040 (3)	-0.0023 (16)	0.009 (2)	0.0008 (19)
C12	0.0289 (10)	0.0196 (10)	0.0503 (13)	-0.0002 (8)	0.0050 (9)	0.0015 (9)
C13	0.0313 (10)	0.0191 (9)	0.0340 (10)	-0.0007 (8)	0.0020 (8)	0.0017 (8)
C15	0.0382 (13)	0.0247 (11)	0.0641 (17)	0.0021 (9)	0.0184 (11)	0.0109 (11)
C16	0.0371 (13)	0.0393 (13)	0.0499 (14)	0.0003 (10)	0.0023 (10)	-0.0053 (11)
C17	0.0510 (16)	0.0486 (15)	0.0641 (18)	0.0055 (13)	0.0220 (13)	0.0111 (13)
C18	0.064 (2)	0.0525 (18)	0.102 (3)	-0.0054 (16)	-0.0229 (19)	-0.0140 (18)
C19	0.0424 (13)	0.0411 (13)	0.0470 (14)	0.0055 (11)	0.0003 (10)	-0.0025 (11)
Geometric pa	rameters (Å. °)					
F1—C7		1.331 (3)	C11A	—C12	1.55	9 (3)
F2—C7		1.316 (3)	C11A	—H11A	1.00	00
F3—C7		1.311 (3)	C14A	—H14A	0.98	00
O1—C7		1.328 (3)	C14A—H14B 0.9800		00	
O1—C4		1.416 (3)	C14A	—Н14С	0.98	00
O2—C12		1.235 (3)	C9B-	C10B	1.50	(7)
O3—C15		1.185 (3)	C9B-	-H9BA	0.99	00
O4—C15		1.352 (3)	C9B-	-H9BB	0.99	00
O4—C16		1.487 (3)	C10E	C11B	1.52	0 (15)

C10B-C14B

C10B—H10B

C11B—C12

C11B-C15

C11B—H11B

C14B—H14D

C14B—H14E

C14B—H14F

1.361 (3)

1.405 (3)

1.396 (3)

1.398 (3)

1.384 (3)

1.384 (3)

0.9500

0.8800

N1-C8

N1-C1

C1-C2

C1-C6

C2—C3

C2—H2A

C3—C4

N1—H1A

1.63 (7)

1.0000

1.0000

0.9800

0.9800

0.9800

1.510 (10)

1.740 (10)

С3—НЗА	0.9500	C12—C13	1.432 (3)
C4—C5	1.377 (3)	С13—Н13А	0.9500
С5—С6	1.385 (3)	C16—C18	1.503 (4)
С5—Н5А	0.9500	C16—C19	1.512 (3)
С6—Н6А	0.9500	C16—C17	1.523 (4)
C8—C13	1.363 (3)	C17—H17A	0.9800
С8—С9В	1.48 (7)	C17—H17B	0.9800
С8—С9А	1.516 (18)	С17—Н17С	0.9800
C9A—C10A	1.530 (17)	C18—H18A	0.9800
С9А—Н9АА	0.9900	C18—H18B	0.9800
С9А—Н9АВ	0.9900	C18—H18C	0.9800
C10A—C14A	1.504 (17)	C19—H19A	0.9800
C10A—C11A	1.540 (4)	С19—Н19В	0.9800
C10A—H10A	1.0000	С19—Н19С	0.9800
C11A—C15	1.515 (3)		
C7—O1—C4	118.68 (19)	Н9ВА—С9В—Н9ВВ	108.1
C15—O4—C16	119.42 (19)	C9B—C10B—C11B	108 (2)
C8—N1—C1	129.19 (17)	C9B—C10B—C14B	113 (4)
C8—N1—H1A	115.4	C11B—C10B—C14B	110 (2)
C1—N1—H1A	115.4	C9B—C10B—H10B	108.4
C2—C1—C6	119.10 (19)	C11B—C10B—H10B	108.4
C2—C1—N1	117.59 (18)	C14B—C10B—H10B	108.4
C6—C1—N1	123.18 (19)	C12-C11B-C10B	106.5 (8)
C3—C2—C1	120.8 (2)	C12—C11B—C15	101.2 (6)
C3—C2—H2A	119.6	C10B—C11B—C15	102.4 (8)
C1—C2—H2A	119.6	C12—C11B—H11B	115.0
C2—C3—C4	119.0 (2)	C10B—C11B—H11B	115.0
С2—С3—НЗА	120.5	C15—C11B—H11B	115.0
С4—С3—НЗА	120.5	C10B—C14B—H14D	109.5
C5—C4—C3	121.3 (2)	C10B—C14B—H14E	109.5
C5—C4—O1	116.67 (19)	H14D—C14B—H14E	109.5
C3—C4—O1	122.0 (2)	C10B—C14B—H14F	109.5
C4—C5—C6	119.9 (2)	H14D—C14B—H14F	109.5
С4—С5—Н5А	120.1	H14E—C14B—H14F	109.5
С6—С5—Н5А	120.1	O2—C12—C13	123.3 (2)
C5—C6—C1	120.0 (2)	O2—C12—C11B	115.9 (4)
С5—С6—Н6А	120.0	C13—C12—C11B	112.7 (4)
С1—С6—Н6А	120.0	O2—C12—C11A	119.9 (2)
F3—C7—F2	110.1 (2)	C13—C12—C11A	116.59 (18)
F3—C7—O1	114.7 (2)	C11B—C12—C11A	35.1 (4)
F2—C7—O1	108.6 (2)	C8—C13—C12	122.08 (19)
F3—C7—F1	105.3 (3)	C8—C13—H13A	119.0
F2—C7—F1	106.2 (2)	C12—C13—H13A	119.0
O1—C7—F1	111.7 (2)	O3—C15—O4	125.9 (2)
N1—C8—C13	126.06 (19)	O3—C15—C11A	120.0 (2)
N1—C8—C9B	111 (2)	O4—C15—C11A	114.0 (2)
C13—C8—C9B	122 (2)	O3—C15—C11B	149.8 (4)
N1—C8—C9A	113.0 (6)	O4—C15—C11B	83.5 (4)
C13—C8—C9A	121.0 (6)	C11A—C15—C11B	32.1 (3)

C9B—C8—C9A	6(3)	O4—C16—C18	102.5 (2)
C8—C9A—C10A	114.8 (10)	O4—C16—C19	108.8 (2)
С8—С9А—Н9АА	108.6	C18—C16—C19	111.5 (2)
С10А—С9А—Н9АА	108.6	O4—C16—C17	110.3 (2)
С8—С9А—Н9АВ	108.6	C18—C16—C17	110.6 (3)
С10А—С9А—Н9АВ	108.6	C19—C16—C17	112.6 (2)
Н9АА—С9А—Н9АВ	107.5	С16—С17—Н17А	109.5
C14A—C10A—C9A	108.7 (8)	С16—С17—Н17В	109.5
C14A—C10A—C11A	113.0 (5)	H17A—C17—H17B	109.5
C9A—C10A—C11A	108.2 (7)	С16—С17—Н17С	109.5
C14A—C10A—H10A	108.9	H17A—C17—H17C	109.5
C9A—C10A—H10A	108.9	H17B—C17—H17C	109.5
C11A—C10A—H10A	108.9	C16-C18-H18A	109.5
C15-C11A-C10A	114.4 (2)	C16—C18—H18B	109.5
C15—C11A—C12	109.83 (19)	H18A—C18—H18B	109.5
C10A—C11A—C12	108.5 (2)	C16—C18—H18C	109.5
C15—C11A—H11A	108.0	H18A—C18—H18C	109.5
C10A—C11A—H11A	108.0	H18B—C18—H18C	109.5
C12—C11A—H11A	108.0	С16—С19—Н19А	109.5
C8—C9B—C10B	111 (4)	C16—C19—H19B	109.5
С8—С9В—Н9ВА	109.5	H19A—C19—H19B	109.5
C10B—C9B—H9BA	109.5	С16—С19—Н19С	109.5
С8—С9В—Н9ВВ	109.5	H19A—C19—H19C	109.5
C10B—C9B—H9BB	109.5	H19B—C19—H19C	109.5
C8—N1—C1—C2	153.2 (2)	C14B—C10B—C11B—C15	-61 (2)
C8—N1—C1—C6	-31.0 (3)	C10B—C11B—C12—O2	157.3 (6)
C6—C1—C2—C3	0.0 (3)	C15-C11B-C12-O2	50.7 (6)
N1—C1—C2—C3	176.0 (2)	C10B—C11B—C12—C13	-52.9 (8)
C1—C2—C3—C4	0.7 (3)	C15-C11B-C12-C13	-159.6 (3)
C2—C3—C4—C5	-1.0 (3)	C10B—C11B—C12—C11A	51.5 (7)
C2—C3—C4—O1	-177.2 (2)	C15-C11B-C12-C11A	-55.2 (5)
C7—O1—C4—C5	123.9 (2)	C15—C11A—C12—O2	-14.0 (3)
C7—O1—C4—C3	-59.7 (3)	C10A—C11A—C12—O2	-139.7 (2)
C3—C4—C5—C6	0.5 (3)	C15-C11A-C12-C13	171.5 (2)
O1—C4—C5—C6	176.93 (19)	C10A—C11A—C12—C13	45.8 (3)
C4—C5—C6—C1	0.2 (3)	C15-C11A-C12-C11B	79.3 (7)
C2—C1—C6—C5	-0.4 (3)	C10A—C11A—C12—C11B	-46.4 (7)
N1—C1—C6—C5	-176.20 (19)	N1-C8-C13-C12	-177.9 (2)
C4—O1—C7—F3	-44.1 (3)	C9B—C8—C13—C12	-4(3)
C4—O1—C7—F2	-167.7 (2)	C9A-C8-C13-C12	2.3 (7)
C4—O1—C7—F1	75.5 (3)	O2—C12—C13—C8	169.1 (2)
C1—N1—C8—C13	-11.5 (4)	C11B—C12—C13—C8	22.0 (5)
C1—N1—C8—C9B	174 (2)	C11A—C12—C13—C8	-16.5 (3)
C1—N1—C8—C9A	168.4 (6)	C16—O4—C15—O3	4.9 (4)
N1-C8-C9A-C10A	161.2 (6)	C16—O4—C15—C11A	-172.1 (2)
C13-C8-C9A-C10A	-19.0 (11)	C16—O4—C15—C11B	177.6 (4)
C9B—C8—C9A—C10A	85 (30)	C10A—C11A—C15—O3	-141.6 (2)
C8—C9A—C10A—C14A	170.9 (8)	C12—C11A—C15—O3	96.1 (3)
C8—C9A—C10A—C11A	47.8 (9)	C10A—C11A—C15—O4	35.6 (3)

C144 C104 C114 C15	5(0(7)	012 0114 015 04	P(7 (2))
C14A—C10A—C11A—C15	56.9 (7)	C12C11AC1504	-86.7(2)
C9A—C10A—C11A—C15	177.4 (6)	C10A—C11A—C15—C11B	55.1 (6)
C14A—C10A—C11A—C12	179.9 (6)	C12-C11A-C15-C11B	-67.2 (6)
C9A-C10A-C11A-C12	-59.6 (6)	C12-C11B-C15-O3	36.2 (11)
N1—C8—C9B—C10B	-166 (2)	C10B—C11B—C15—O3	-73.7 (10)
C13-C8-C9B-C10B	19 (4)	C12-C11B-C15-O4	-132.0 (5)
C9A—C8—C9B—C10B	-60 (28)	C10B—C11B—C15—O4	118.2 (7)
C8—C9B—C10B—C11B	-51 (4)	C12-C11B-C15-C11A	65.9 (6)
C8—C9B—C10B—C14B	-173 (3)	C10B-C11B-C15-C11A	-44.0 (6)
C9B-C10B-C11B-C12	69 (3)	C15—O4—C16—C18	173.6 (2)
C14B—C10B—C11B—C12	-167 (2)	C15—O4—C16—C19	-68.2 (3)
C9B-C10B-C11B-C15	174 (3)	C15—O4—C16—C17	55.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1A····O2 ⁱ	0.88	2.08	2.886 (2)	153
C2—H2A···O2 ⁱ	0.95	2.58	3.333 (3)	136
C6—H6A···O3 ⁱⁱ	0.95	2.55	3.385 (3)	147
C9B—H9BA···O3 ⁱⁱⁱ	0.99	2.44	3.40 (6)	162

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+1; (iii) x, -y+3/2, z+1/2.

Fig. 1

